
Macroeconomic Model Data Base 2.0 - User Guide

This user guide describes how to install and use the Macroeconomic Model Data Base, version
2.0 (hereafter the Modelbase). After reading Sections 1 and 2 you should be able to run the software
and conduct comparison exercises employing the models and options contained in the Modelbase.
The next two sections explain the structure of the files used in the Modelbase in more detail. Sections
5 and 6 discuss how one can add new models and new policy rules to the Modelbase, respectively.
Finally, Section 7 provides instructions on how to handle the graphical operations necessary to include
a new model or a new common rule.

1 Installation and software requirements

The Modelbase is contained in a zip file called MMB_2_0_Dyn4.zip which you may save to any place
on your computer. In order to use the Modelbase, you have to extract the zip file to retrieve the folder
MMB_2_0_Dyn4. This folder contains the file MMB.m and a set of subfolders relating to the models
included in the Modelbase, to Modelbase options and to output. Figure 1 illustrates the structure of
the Modelbase. The subfolder Models contains a specific folder for every model included in the MMB.
The specific folders contain a single Dynare mod-file in which the particular model is specified as well
as related Matlab files, some of which are created by DYNARE. The subfolder MMB_OPTIONS con-
tains specific Matlab files related to the usage of the Modelbase for policy analysis and comparison,
as well as explanatory reports for models and policy rules. In the folder OUTPUT the results from the
desired exercises are stored in an Excel file.

Since the program is written in MATLAB, you need a version of it installed on your computer.
For model solution the program utilizes DYNARE, which can be downloaded freely from the web.1

Double-clicking on the downloaded DYNARE exe-file opens a setup which guides you through the
installation. After completion, one has to add the DYNARE path to MATLAB. In order to do so,
open MATLAB and choose Set path from the File menu. Use the option Add folder and browse to the
directory where you have installed DYNARE. The DYNARE subfolder that has to be added is called
matlab. The Modelbase software is currently compatible with DYNARE 4.2, 4.3 and 4.4.2

1The URL of the DYNARE website is http://www.dynare.org.
2We have tested that the Modelbase software works well with Dynare 4.4.0, 4.4.1 and 4.4.3, the latest versions until

August 2015.

1

Figure 1: STRUCTURE OF THE MODELBASE

2 Using the Modelbase

MMB.m represents the main file which has to be run when using the Modelbase. In order to run
MMB.m, you can either open the file in MATLAB and click the run button, which automatically ad-
justs the current directory of MATLAB to the correct path, or you can just start MATLAB and adjust
the current directory to the path for the MMB folder manually. In the latter case you type afterwards
MMB into the MATLAB command window and press the Enter button. In both cases the Modelbase
interface shows up that will guide you through a menu of options from which you can choose. There
are four exclusive options for which you can choose. As illustrated in Figure 2, these options are:

2

1. One policy rule, many models

2. One model, many policy rules

3. Robust policy rules

4. Adaptive learning in expectation

In the current version of the Modelbase one can use option 1 and 2. In the following, we describe
what one can do under each option and how to use them.

Figure 2: MODELBASE MAIN MENU: OPTIONS

Option 1: One policy rule, many models

Under this option users can perform model comparison and analysis under a particular monetary
policy rule. Once this option is selected, a menu called OPT1MENU will appear. The menu for One
policy rule, many models is illustrated in Figure 3. This menu has several structures that deal with the
selection of models to simulate, the selection of a common monetary policy rule used in each model as
well as the selection of the statistics and visual output to be displayed. More specifically, the menu for
Option 1 has the following sections: a section on the models available to choose (many models at the
same time), a section on the policy rules to be chosen (only one policy rule at a time), a section on the
output one would like to look at (unconditional variance of the variables, auto-correlations, impulse
responses) and the choice of shocks. Under the section Other, one can save the output at the desired
file name and also read detailed information about the models and the policy rules in the Modelbase.

Under One policy rule, many models, the user can compare the impulse response functions of
common variables to monetary policy shock and to fiscal policy shock. The common variables are

3

quarterly output gap, quarterly output, year-on-year rate of inflation and policy interest rate in annual
terms. Currently, we consider seven monetary policy rules that are taken from Taylor (1993), Levin
et al. (2003), Smets and Wouters (2007), among others. Users are also given a choice to specify their
own rule. By default the results generated by the Modelbase will be stored in an excel sheet called
results.xls in the OUTPUT folder. This name of the output file can be customized by the user by
writing the desired name in Name Output File. The options selected by the user will be displayed in
the MATLAB command window.

Figure 3: MODELBASE MENU: ONE POLICY RULE, MANY MODELS

In the following, each section of One policy rule, many models is described step by step.

Models
Under this section, one can select as many models as desired by clicking on the respective model
button. When choosing more than one model, be aware that it might take quite some time until all
models are solved. A detailed list of the available models in the Modelbase version 2.0 and a short
description of each of them is given in a separate document, which can be opened by clicking the
button of Models description (pdf) under the section Other in this menu.

Monetary Policy Rules Under this section the user can select a particular interest rate rule. The origi-
nal rules of the models in the Modelbase have been replaced with a fairly general monetary policy rule
that allows many possible parameterizations. Currently the user can choose one of the seven policy
rules. A detailed overview of available monetary policy rules is discussed in a separate document

4

for a brief overview of policy rules in the Modelbase. A particular rule is chosen by clicking on the
respective button in the menu. Only one rule can be selected. The name of the chosen rule will be
displayed in the MATLAB command window.

The user also has the option to specify its own parametrization for the monetary policy rule. When
selecting User-specified rule, another menu displays, as shown in Figure 4, called “User-specified
Monetary Policy Rule”. In this menu, the user should assign a desired value only in the cells with
zeros. Each cell corresponds to the value of the parameter in front of the desired variable in the
monetary policy rule, which are:

• interest, the annualized quarterly interest rate;

• inflationq, the annualized quarterly inflation rate;

• outputgap, the quarterly output gap;

• output, the quarterly output.

For users that would like to use their specific rule, we provide a "Read me" file with explanations and
warnings.

Figure 4: MODELBASE MENU: USER-SPECIFIC POLICY RULE

Choose your options and your shocks
Having chosen the models and a policy rule, the user can make some non-exclusive choices re-

garding the exercise outcomes to be displayed. The user can decide whether to see the unconditional
variances and plot autocorrelation functions of the common variables, both of which are computed
using theoretical moments of the solution for each variable. Also the user can opt for plotting im-
pulse response functions of the common variables and specify the horizon for the analysis that is set
to twenty periods as a default. One can choose impulse responses to a unit monetary policy shock
(one percent point increase in the monetary policy shock), and/or to a unit fiscal policy shock (one
percent increase in GDP share of government expenditures). The choices will again be documented in

5

the command window. Impulse responses and autocorrelation functions of common variables will be
plotted in MATLAB figures while the unconditional variances of common variables of each models
will show in the MATLAB command window. The numerical results for the autocorrelation functions
and impulse responses will be stored in an Excel file called results.xls in the OUTPUT folder. The
user can also specify its desired name for this file of results.

There are a couple of things that the user should be aware of to correctly understand the received
output after performing a desired MATLAB exercise. First, for certain model and policy rule combi-
nation, a solution might not exist. In this case, the model neither uniquely satisfies Blanchard-Kahn
conditions nor determines the steady state values of certain variables. Second, all models of the Mod-
elbase have a monetary policy shock, but a significant number of them do not have a fiscal policy
shock. If this is the case, the impulse responses to a fiscal policy shock will not be available. Lastly,
for certain models, the unconditional variances are zero and the autocorrelation functions do not exist.
This is the case for some calibrated models in which variances of all shocks are set to zero.

Option 2: One model, many policy rules

Under this option users can do analysis for a particular model under several monetary policy rules.
Once this option is selected OPT2MENU will appear. The menu for One model, many policy rules is
illustrated in Figure 5. The structure is the same as in Option 1. Again, one can select desired models
to simulate, desired policy rules as well as statistics and visual output to be displayed.

6

Figure 5: MODELBASE MENU: ONE MODEL, MANY POLICY RULES

However, in comparison to Option 1 there are the following differences:

1. The user can choose only one model but several policy rules at a time.

2. In the Monetary Policy Rules section, there is an additional rule, Model specific rule. This corre-
sponds to the original monetary policy rule in each of the models. If the original policy rule of a
model is available, the choice for Model specific rule is active. Otherwise, this option is muted.

3. In the Choose your shocks section, the user can select either Monetary Policy Shocks or Model
Specific Shocks. When choosing the former, the impulse responses to one unit monetary policy
shock are computed. We provide the impulse response functions of all model variables as well
as common Modelbase variables in the all IRFs Mon.Pol.Shock sheet in the output file in Excel
as a default.

In case Model Specific Shocks is selected, another menu appears with the names of the shocks
used in the specific model and several output choices. For example, if one would choose model
NK_RW97, a menu as illustrated in Figure 6 appears. This model has only three specific shocks: a
cost push shock, a monetary policy shock and a fiscal policy shock. The user can make a choice to
obtain contemporaneously combined impulse responses of selected shocks. Also the user can choose
to plot the impulse responses of the common Modelbase variables or all the variables of the model.
For both cases the same numerical results will be stored in the output file. If a cost push shock, u_ , is
selected, the impulse response functions of all variables to a unit cost push shock are computed. The

7

names of model-specific shocks are not self explanatory. In order to understand to what shocks they
pertain, one should consult the Dynare file of the model and the respective paper.

Simulating a model with the Model specific rule allows the user to replicate qualitatively some
of the results in the respective paper. If the user wants to replicate the results quantitatively, he or
she has to consider the size of a shock used in the paper. For example, let us consider the US_CD08
model, which is a medium-scale New Keynesian model with financial frictions and is estimated on
quarterly U.S. data. In the De Graeve (2008), the impulse response functions to one standard deviation
(1SD) productivity shock are given in Figure 10 in the paper. Suppose we want to replicate this result.
First of all, we have to consult the Dynare mod-file of this model and the paper to find out that the
variable name for this shock is epsinno_A and one standard deviation of a productivity shock corre-
spond to 0.4695. Then, we check the impulse responses in the output excel file and open the ’all IRFs
epsinno_A’ sheet. The Modelbase always simulates impulse response functions to one unit shock,
therefore, every impulse response functions of US_CD08 model variables needs to be multiplied by
0.4695 (one standard deviation of a productivity shock), in order to replicate the results of the paper.

Figure 6: MODELBASE MENU: MODEL SPECIFIC SHOCKS

In both Option 1 and Option 2, the user can go back or load the previous choices.

8

3 Structure of the MMB.m, MMBOPT1.m, MMBOPT2.m files

In the following we give a detailed overview of the main MATLAB files corresponding to the Model-
base options discussed above. This subsection and the following ones are designed especially for the
Modelbase users who would like to know more technical details about the Modelbase and also add
new models and new rules.

MMB.m consists of four parts. In the first part, primary global variables which will be used
throughout the Modelbase exercises are declared. The so-called global variables collect the user’s
choices from the Modelbase options. In the second part variables relating to models available in the
Modelbase are defined. The variable names lists all models and is used to produce proper legends of
the graphs. In addition, an identification number is assigned to each model in the comment line just
next to a model name. We classify all models into five sub-groups: Calibrated models, Estimated US
models, Estimated euro area models and Estimated/Calibrated multi-country models and Estimated
other-country models. The variables for each sub-group are defined as a collection of identification
numbers of models belonging to the respective sub-group. The variable variabledim denotes for each
model the dimension unit of original model shocks where 1 indicates shocks in percentage and 2
shocks in percent/100. The variable mycolor contains a color and line specification for each model,
helpful when displaying output in graphs and making comparison among different models. Whenever
a new model is added in the Modelbase, the user should make the respective initialization (add entries)
in all three variables.

The third part is defining monetary policy rules considered in the Modelbase. In this part of the
code, one can observe the vector of policy rules, the original specification of the rule and a description
of the rule in terms of the modelbase general rule specification. When adding a new rule, the user
should make the appropriate initializations in this part of the code as explained in Section 6. The
variable rulenames lists all rules implemented in the Modelbase. The identification numbers are also
given to each rule in rule_number. A text block follows which describes a very general monetary
policy rule that is used for each model and that nests the policy rules listed in the Appendix B. The
generalized policy rule is composed of lagged interest rates, the lags and leads of inflation, output gap
and output. For each common rule it is shown how the original representation is transformed into the
respective general rule representation. For simplicity we create the matrix common_rule of which the
row number corresponds to the identification number of each rule. A set of policy rule coefficients is
set in each row of common_rule according to the mapping scheme which is shown in the text block.

One of the policy rules that users employ in Option 2 is the original model-specific rule. The vari-
able model_with_rule has a collection of the identification numbers of the models of which the original
rule is included in the Modelbase. The variable model_without_rule contains the numbers of the mod-
els of which the original rule is not implemented. For example, the value 1 in models_without_rule
means that for model NK_RW97 (which is identified with 1 in the list of models) an original policy
rule is not implemented in MMB. Same as for models, the myrulecolor variable contains a color and
line specification for each policy rule, helpful for displaying output in graphs. In the last part of the
MMB.m, the main menu of the Modelbase (MAINMENU) is called.

MMBOPT1.m and MMBOPT2.m
The computation for each Modelbase option, in terms of solving the models using DYNARE

9

and computing and displaying results, is done through the MMBOPT1.m and MMBOPT2.m files,
respectively. The structure of MMBOPT1.m and MMBOPT2.m is illustrated in Table 1.3

Table 1: STRUCTURE OF THE MMBOPT1.m AND MMBOPT2.m

MMBOPT1.m MMBOPT2.m

1. Initialization 1. Initialization
Storing information obtained from
OPT1MENU

Storing information obtained from
OPT2MENU

Specification of a choice set of policy rules 2. Initializing a loop over selected rules
Saving parameters for the chosen rule Specification of a choice set of policy rules
2. Solving the model and computing statistics Saving parameters for the chosen rule
Initializing a loop over selected models Solving the Model
Stepwise model solution Stepwise model solution
Storing model solutions and statistics Storing model solutions and statistics
3. Obtaining results 3 Obtaining results
Extracting statistics for common variables Extracting statistics for common variables
Plotting results as chosen by the user Plotting results as chosen by the user
Saving results in an Excel file Saving results in an Excel file

Before starting with a detailed description, it is important to mention that the information collected
from the Modelbase interface (Modelbase options) is saved in a structure variable called modelbase.
This structure is saved as a MAT-file and is accessible even after a workspace clearing. For example,
modelbase.horizon saved in modelbase, contains the number of periods to be plotted for impulse re-
sponses or other graphs. The default value is fixed to 20 periods and one can change the number of
periods that are plotted by modifying this entry in the Modelbase interface. Table 2 lists the remaining
most important variables in the structure modelbase.

In the following, the specific parts of MMBOPT1.m file are explained in detail. MMBOPT2.m is
written with a similar structure to MMBOPT1.m. The major difference is that a loop is initialized over
selected rules instead of over selected models because the user chooses only one model but many rules
in Option 2.

3A cell starts with two comment sign, i.e. with %%. When setting the cursor in a cell, the background color of this cell
turns to yellow and can thus easily be spotted.

10

Table 2: KEY VARIABLES IN MMBOPT1.m AND MMBOPT2.m

modelbase.totaltime total CPU time (in seconds) used by the modelbase
modelbase.savepath path for the Excel file that contains the output
modelbase.names names of all models
modelbase.variabledim dimension of model-specific shocks
modelbase.horizon number of periods to be plotted
modelbase.mycolor color vector for the graphs
modelbase.rule chosen rule
modelbase.models chosen models
modelbase.option(1) autocorrelation functions
modelbase.option(2) impulse response functions
modelbase.option(3)* shock several innovations contemporaneously
modelbase.option(4)* plot impulse responses for all model variables
modelbase.option(5) unconditional variances of common variables
modelbase.option(6)* choose model specific shocks
modelbase.data* stores the user-specified rule
modelbase.homepath path of the modelbase folder
modelbase.namesshock names of shocks contained in the modelbase
modelbase.innos chosen shocks
modelbase.modeltime CPU time (in seconds) used for solving each model
modelbase.setpath paths of the modelfolders of chosen models
modelbase.epsilon counts the number of loops
modelbase.info equals 1 if a model has no determinate solution; otherwise 0
modelbase.AUTR contains the autocorrelation functions
modelbase.AUTlgy_ contains variable names that correspond to the autocorrelation

functions
modelbase.IRF contains the impulse response functions
modelbase.IRFlgy_ contains variable names that correspond to the impulse response

functions

* used in MMBOPT2.m only!

Part 1 of MMBOPT1.m: Initialization
This first block of the MMBOPT1.m stores all the information obtained from the menu of Op-

tion 1, OPT1MENU. Afterwards, the coefficients of the chosen policy rule are stored in the file pol-
icy_param.mat. They are loaded later on in the specific model files to initialize the monetary policy
equation. Next, all option choices for an exercise are displayed. As in the model files the monetary
policy shock has the name interest_ and the fiscal policy shock has the name fiscal_. This convention
is important to address the shocks of the right equations after having solved the model.

Part 2 of MMBOPT1.m: Solving the model and computing statistics
Before solving the models using DYNARE, all choices made so far have to be saved in the file

Modelbase since DYNARE clears the workspace before solving a model. A loop over selected models,
which are saved in the vector modelbase.models, is initialized. For every turn, the current working
directory is adjusted to the subfolder of each model. Using the command dynare followed by the

11

model name, c.f. dynare NK_CGG99 to solve the model of Clarida, Gali, and Gertler (1999), calls
the software DYNARE to translate the DYNARE syntax in a convenient way. Afterwards the function
stoch_simul_modelbase.m is called to solve the model and compute autocorrelation functions, im-
pulse response functions and unconditional variances. The results are appended to the file Modelbase
before we return to the beginning of the loop to solve the next model.

Part 3 of MMBOPT1.m: Plotting the results
The last part of the MMBOPT1.m is devoted to processing and presenting the results. Figures for

impulse response functions of the common variables to each shock and autocorrelation functions of
the common variables are set up and plotted for each model. The common variables can be easily
identified within the whole output of each model using the function loc that searches for positions of
string variables in vectors like modelbase.IRFlgy_.

4 Structure of the model files

The model files are written in the syntax of DYNARE and have a common structure. As an example we
take the simple New-Keynesian model by Rotemberg and Woodford (1997) to explain the structure of
the mod-files, its model specific parts and the common model data base blocks. The current example
is based on the DYNARE 4 version of the Modelbase. The mod-file is shown in Figure 7 and Figure
8. However, the explanations apply to all models. In the following, the two main parts of a mod-file,
the preamble and the model block, are described step by step.

12

Figure 7: STRUCTURE OF THE MODEL FILES: THE PREAMBLE

13

Figure 8: STRUCTURE OF THE MODEL FILES: THE MODEL BLOCK

14

Part 1: The preamble

• Each model file begins with some information about the model. This should include the title,
the authors, the publication etc. In front of this description you will find the symbols //, which
denote a comment in DYNARE.

• The file then starts with the initialization of the model variables. In our example shown in
Figure 7 the model-specific endogenous variables are listed in line 3 after the keyword var:
pi, y, ynat, rnat, i, x, u, g and g_. The latter in fact represents an exogenous government
spending shock, however it has to be initialized as endogenous variable for reasons that will be
explained below. It follows a Modelbase block in lines 4 to 7 in which the common variables
are introduced. In general, Modelbase blocks are separated through //******* symbols from
the rest of the file.

• Following the keyword varexo in line 9 the exogenous variables are initialized. In our example
this is u_, a cost push shock as well as the common interest rate shock, interest_ and the common
fiscal policy shock, fiscal_ in line 12. Note that in some models with no treatment of government
spending, the latter Modelbase shock may be left out.

• Following the keyword parameters in line 15, the Modelbase parameters in the Modelbase
block are initialized. In Figure 7 line 19 we have, for brevity reasons, only included three
policy parameters. In the actual mod-files there are many more leads and lags. These are the
parameters of the general monetary policy function, except for the last one, coffispol, which
enters the common discretionary government spending equation.

• Then the model-specific parameters are initialized in line 21.

• Afterwards numerical values are assigned to the model-specific parameters in lines 23 to 32.

• Finally a block called Specification of Modelbase Parameters is added. First in lines 37 to 44
the numeric values of the parameters of the selected monetary policy rule are loaded. They
are contained in the file policy_param.mat in the subfolder MODELS. For models in which the
original shocks are expressed in percent/100 the parameter std_r_ has to be reset to 100 after the
parameter-loading command. In our example this would have to be done in line 43. However,
the shocks in this model are already expressed in percentage terms. Secondly, the discretionary
fiscal policy parameter coffispol is defined as a function of the model-specific parameters in
order to obtain a government spending shock of one percent of GDP. The exact implementation
of the common fiscal policy shock will be described below. In our example no adjustment is
needed and hence coffispol is set equal to one.

Part 2: The model block

• The model block starts in line 49 of Figure 8 as indicated by the keyword model followed by
linear, which tells DYNARE that the equations are already linearized and thus reduces comput-
ing time.

• In the Modelbase block going from lines 51 to 60 the common variables are defined in terms
of the original model variables. The variable interest denotes the annualized short-term interest
rate, inflation is annual inflation, inflationq represents annualized quarterly inflation, outputgap

15

and output denote the output gap and output, respectively. The common variable fispol repre-
sents discretionary fiscal policy. It is set equal to the model-specific government spending shock
variable, which in the case of our example is g_. Note again, that this model-specific shock has
to be initialized as an endogenous variable. This allows us the keep the original model equation
for government spending unchanged.

• It follows the common Policy Rule block. In lines 65 to 71 the common monetary policy rule is
specified. Again for reasons of brevity we have not displayed the complete general policy rule
in Figure 8. Below in line 73, the common equation for discretionary government spending is
specified.

• The original model equations are then specified in lines 78 to 87. Note that the model-specific
monetary policy rule is commented out because the common policy rule is introduced. On the
contrary, the government spending equation in line 86 has remained unchanged. The model
section ends in line 88 with the required keyword end.

• Finally the variance covariance matrix is specified in lines 91 and 92 between the keywords
shocks and end. Importantly, the variance of the original model-specific government spending
shock has been assigned to the common fiscal policy shock variable fiscal_. Hence, the com-
mon shock fiscal_ affects the fiscal policy variable fispol through the common discretionary
government spending expression in line 75 which is set equal to the model-specific government
spending shock g_ in line 59.

• The stoch_simul command in line 96 is commented out. Alternatively one can also delete this
command.

5 Adding models to the Modelbase

Adding a new model to the data base consists of three steps. First, the original model has to be trans-
lated into a DYNARE mod-file and the common Modelbase variables have to be defined as functions
of the original model variables. Second, the mod-file must be stored under the model name in a folder
with exactly the same label. Third, the new model has to be initialized in the Modelbase interface.
Figure 9 illustrates the Modelbase folders and in red we attract attention to the folders/files where one
should initialize the new model. In the following, each of these steps is described in detail.

16

Figure 9: ADDING MODELS IN THE MODELBASE

Step 1: Creating the mod-file

• The first task when adding a new model to the Modelbase is to create a DYNARE mod-file. The
file should start with a comment section giving some information about the associated reference
paper(s) for the model.

• The file must have the usual structure of a DYNARE mod-file. That is, one starts with the
initialization of variables, shocks and parameters. Then the equations describing the model

17

follow and finally the variance-covariance structure of the shocks is specified.

• However, each of the before mentioned sections has to be augmented by a Modelbase block.
This Modelbase block should be visually separated from the original model sections through a
comment line //*******.

• After the initialization of the original model variables, the common block Modelbase Variables
follows. It consists of the six common variables interest, inflation, inflationq, outputgap, output
and fispol. Those variables will be described below. If output is not specified in the model, then
the common variable output has to be left out. Furthermore, in some small models, one may
have to leave out the fispol variable. This common block corresponds to lines 4 to 7 in Figure 7

• The common block Modelbase Shocks is added after the initialization of the original model
shocks as in lines 10 to 13 of Figure 7. It consists of a common monetary policy shock,
interest_, and of a common fiscal policy shock, fiscal_.

• The third common block is the Modelbase Parameters section. Following the initialization of
the original model parameters, the common Modelbase parameters are preset, consisting of the
monetary policy rule parameters and the discretionary fiscal policy parameter coffispol. For the
Dynare 4 version of the Modelbase, one first defines the Modelbase parameters and afterwards
the original model-specific parameters.

• It follows the numeric specification of the parameters. This is done first for the model-specific
parameters and then separately for the common Modelbase parameters in the block called Spec-
ification of Modelbase Parameters. First, the parameter values of the selected monetary policy
rule are loaded. They are contained in the file policy_param.mat in the subfolder MODELS. For
models in which the original shocks are expressed in percent/100, the parameter std_r_ has to be
reset to 100 after the parameter-loading command. This specification is required for the proper
calculation of impulse response functions. In our example this would have to be done after line
44. However, the shocks in the example are already expressed in percentage terms. Secondly,
the discretionary fiscal policy parameter coffispol is defined as a function of the model-specific
parameters such that a unit government spending shock has a unit impact on output. In our
example no adjustment is needed and hence coffispol is set equal to one.

• At the beginning of the model section, a model-specific Modelbase block has to be added in
order to define the common Modelbase variables in terms of original model variables. This
is done in lines 52 to 59 in our example. The variable interest is defined as the annualized
short-term interest rate set by the policy maker. The variable inflation denotes the year-on-
year inflation rate in percent and inflationq denotes the annualized quarter-to-quarter inflation
rate in percent. If for instance the original model variable representing quarterly inflation is
not annualized, then inflationq would have to be specified as four times the original quarter-to-
quarter inflation variable. The common variables outputgap and output represent the output gap
and output, respectively.

• The variable fispol specifies the common discretionary fiscal policy variable. For implementa-
tion of the discretionary fiscal policy variable, one does not have to change the original model
equations. The original shock that should represent the common fiscal policy shock has to be
initialized as endogenous variable, i.e. following the command var instead of varexo. In our
example the original government spending shock g_ is initialized in this way. Furthermore, in

18

the section in which the shock variances are specified, this original shock has to be replaced by
the common shock fiscal_. The fispol variable has to be set equal to the original shock variable.
If there does not exist a fiscal policy shock in the original model, fiscal_ and fispol should not
be initialized.

• Afterwards the common Policy Rule block is added to the mod-file, specifying the general mon-
etary policy rule, as it is done in lines 62 to 72 in Figure 8. For the sake of brevity we have not
displayed the complete general policy rule in our example. The original monetary policy rule
has to be commented out in the original model code. In case the model contains a fiscal policy
shock, common discretionary government spending is also specified in the Policy Rule block,
expressing fispol as a function of the fiscal_ shock, as in line 75 of Figure 8. Hence, the common
shock fiscal_ affects the fiscal policy variable fispol through this common discretionary govern-
ment spending expression and fispol is set equal to the model-specific government spending
shock g_ in line 59. The original model equations following this block remain unchanged.

• The variances of the two common shocks are specified together with the variances/covariances
of the model-specific shocks. Specifically, the variance of the monetary policy shock interest_
is set equal to zero and therefore it does not have to show up explicitly. For the fiscal policy
shock fiscal_ one adopts the original covariance specification of the replaced shock if available.
Otherwise one sets the variance of the fiscal policy shock equal to zero.

• Finally, one has to delete or out-comment the commands for finding the steady state and solving
the model as it is done in line 95 of our example.

Step 2: Storing the mod-file

• Next, the file has to be stored as mod-file under the model name. In the example, the NK_RW97
model is stored as NK_RW97.mod. The name of calibrated New Keynesian models should start
with NK, models of the US economy should start with US and models of the Euro area should
start with EA. The full model name should allow for the identification of the specific model
among the other Modelbase models. The file must be stored in a folder that has to be created
under exactly the same model name and that is positioned in the subfolder MODEL.

Step 3: Initializing the model in the Modelbase interface.

• As the final step, one initiates the model in the main file MMB.m as well as in the Modelbase
interface, namely, adding new entries in MMB.m, OPT1MENU.m and OPT2MENU.m files in
the MMB_OPTIONS folder.

• In MMB.m, the model name has to be added at the corresponding position to the vector names.
Currently, one can substitute the New_Model with the name of the model one is adding. Next,
a new entry has to be added at the corresponding position to the vector variabledim. This entry
has to be 1 if the standard deviations of the model-specific shocks are expressed in percent and
it has to be 2 if the standard deviations are expressed in percent/100. Lastly, a new entry has
to be added as well at mycolor. Also, the model should be assigned to one of the five model
categories in Modelbase.

• The new models should be also initialized in OPT1MENU.m and OPT2MENU.m files under the
MMB_OPTIONS folder. Please consult Section 7 for instructions how to do this.

19

• The model name should be updated also in the Modelbase graphical interface with Graphical
User Interface Developing Environment (in short GUIDE) available in MATLAB. Currently we
show the reserved places for new models, under the name New Model. For instructions how to
do this please consult Section 7.

6 Adding rules to the Modelbase

There are three ways to add a new rule to the Modelbase: 1) add a rule to a list of common mon-
etary policy rules, 2) include the model-specific rule calibrated or estimated by the original model
authors and 3) specify a rule using the Modelbase user-specified rule option. Below we discuss each
case in detail. Keep in mind that policy rules in the Modelbase have to be reformulated in terms of
common Modelbase variables such as the annualized quarterly interest rate, the annualized quarter-
to-quarter rate of inflation, the quarterly output and the quarterly output gap. This is explained in
detail in Wieland, Cwik, Mueller, Schmidt, and Wolters (2012) and in the separate document, called
’Monetary policy rules description’. Also, one can see how it practically works by looking at common
monetary policy rules already implemented in the MMB.m file.

1) Add a common monetary policy rule

• The first task is to choose a suitable name for the new policy rule and to include it into an
array for a list of rule names, rulenames. One also has to add its acronyms in character arrays,
rulenamesshort and rulenamesshort1 4. Please make sure that the new rule name is of the same
size of character array as the already existing one. Next, one assigns color to the rule with the
array myrulecolor.

• Then, one adds the specification of the new-rule coefficients right after the last common rule’s
specification.

• The remaining work is to create a button (or a checkbox) for the new rule in the section of rules
in the menu file OPT1MENU.m (or OPT2MENU.m) using GUIDE. For how to include a new
common rule using GUIDE, please refer to Section 7.

2) Add the model-specific monetary policy rule

• When adding a new model, it is possible to include its policy rule as long as the rule can be
rewritten in terms of Modelbase common variables. If this is the case, the user should add the
model identification number to the variable vector model_with_rule in the main file MMB.m
such that a model-specific rule is activated when its corresponding model is chosen in Option
2. Otherwise, the user should add the model number to the variable vector model_without_rule.
For example, if the policy rule is set for the interest rate to react to exchange rate or credit
growth, the user cannot include the original rule in the Modelbase.

• Finally, the user has to insert the specification of the model-specific rule into the part of switch
statement in the file MSR_COEFFFS.m using the model’s identification number as the case
expression.

4As rulenamesshort1 are used for displaying simulation outcomes in Matlab console, any blank is not allowed in the
rule name.

20

3) User-specified monetary rule

• When User-specified rule is chosen, a menu with a general form of a monetary policy rule ap-
pears in terms of common variables. Then, one can specify desired coefficient values of each
variable in columns and to the corresponding lag/lead in rows. For example, to implement the
Taylor (1993) rule using the option for user-specified monetary policy rule, one should set the
coefficients as following: ρπ,0 = ρπ,−1 = ρπ,−2 = ρπ,−3 = 0.375, ρq,0 = 0.5 and the rest of
coefficients to zero. Figure 10 illustrates how to use the option for a user-specified rule with the
example of Taylor (1993) rule.

Figure 10: TAYLOR (1993) RULE USING THE OPTION OF USER-SPECIFIED RULE

• Note that with certain rule parametrization, models cannot be solved due to several reasons. For
example, the system of equations may violate the Blanchard-Kahn conditions so a model does
not yield a unique stationary rational expectations equilibrium. There is no clear guideline for
conditions for determinacy, but Levin, Wieland, and Williams (2003) suggest several crucial
characteristics of rules that deliver a unique equilibrium: a relatively short inflation forecast
horizon, a moderate degree of responsiveness to the inflation forecast, an explicit response to
the current output gap, and a substantial degree of policy inertia.

7 Instructions on how to use the Modelbase graphical operations

The Graphical User Interface (GUI) embodied in MMB 2.0 is developed in the so-called Graphical
User Interface Developing Environment (in short GUIDE) available in MATLAB. To add a new model
or a new monetary policy rule, you will deal with some interesting and simple objects that GUIDE
offers in a user-friendly way. More generally, a GUI consists of two types of files: the figure itself (a
.fig file) and a code file (an .m file). The latter contains actions to be executed once the user clicks on
a tab in the interface. The Modelbase interface uses five types of objects: edit-fields, toggle buttons,

21

panels, checkboxes and a group of radio buttons. Adding a new model or rule primarily requires
dealing with the last three objects. Before delving deeper in how to include a new model and rule in
the Modelbase it is worth starting with a brief overview of a GUI. Figure 11 shows a GUI open in
GUIDE with update mode. This mode allows the user to edit the GUI. Under MATLAB, opening an
interface with update mode works as follows: Type guide in the MATLAB command window, and a
dialog box will pop up. Under the tab Open Existing GUI, browse and choose either OPT1MENU.fig
or OPT2MENU.fig. A figure similar to Figure 11 will show up.

Figure 11: CREATING OPT1MENU.fig WITH GUIDE

The first elements we start with are panels. Their usefulness is twofold: First, panels enable the
user to create proper designs and to encapsulate objects with similar characteristics. Second, they can
be used to implement a group of mutual-exclusive radio buttons.One may need to resize the panel. For
illustration, click on the tab framed in green in Figure 11 to select the panel Models and then adjust
its size by clicking and dragging on the edge.5 When needed, each tab in panel can be displaced by
click-and-dragging. The next elements we look at are checkboxes and radio buttons. They are shown
in the red box in Figure 11. The right tab is for checkboxes while the left is for radio buttons. The
checkboxes are used to allow for multiple choices within a panel. This is the case with models in
Option 1 and policy rules in Option 2. Conversely, choices are mutual exclusive in panels containing
radio buttons; This is the case with models in Option 2 and policy rules in Option 1. One can add a
new tab by clicking and dragging each object to the desired place in the GUI figure. Make sure that
the object is settled in the appropriate panel. The panel is highlighted when it is hovered over.

5The same can be done for the whole GUI figure using the corner illustrated in blue in Figure 11

22

After creating a new tab, you need to change its properties. Double-click on the new object to see
its properties in the Property Inspector6. As shown in the Figure 12, a couple of fields needs to be
edited: the first one, String (see the box framed in red), is the name that will appear on the GUI figure.
From our convention, String is the model/rule name for a new model/rule. The second field, the so-
called Tag, will serve as an object unique identifier in the code file. The name of the Tag should only
include lowercase letters and digits. According to our convention, the tag for models implemented
in the Modelbase are the model names (in lowercase letters) where the underscore is omitted. For
example, the tag of model NK_RW97 is nkrw97. In the case of a checkbox the callback field, framed
in blue, need to be edited to specify actions to be executed behind the object in the code file (see
below). For radio buttons the callback function is already implemented with the panel. Hence, no
need to change it. Now we come more specifically to the procedure of adding new models and new
monetary policy rules into the Modelbase.

Figure 12: PROPERTY INSPECTOR FOR NEW CHECKBOX

Add new models step by step
Henceforth, it is assumed that modeltaghere is the Tag of a new model.

• In Option 1: modifications should be done in OPT1MENU.fig and OPT1MENU.m. Augmenting
the first option of the Modelbase with a new model implies proceeding as follows:

(i) Add a new checkbox in the panel Models.

(ii) Edit the fields String and Tag

(iii) Copy and paste the following code in Callback in the property inspector

OPT1MENU(’models_Callback’,hObject,eventdata,guidata(hObject))

As objects in this panel are sharing a common callback, one can also copy this line from
the property inspector of an existing checkbox in the panel.

(iv) Add a new model tag in the array of tags modelslist in the function OPT1MENU_OpeningFcn
in OPT1MENU.m. In our example, you should append a new model tag to modelslist as
following:

6This also is accessible by right-clicking on the object or under the GUI menu Property Inspector

23

modelslist = [· · · , handles.modeltaghere].

Make sure that the Tag in the variable modelslist has the same ordering as the model name
in the variable names, see model_number in MMB.m.

• In Option 2: modifications should be done in OPT2MENU.fig and OPT2MENU.m. Here an
user has to:

(i) Add a new radio button in the panel Models.

(ii) Edit the fields String and Tag

(iii) Add a new model tag in the array of tags modelslist in the function OPT2MENU_OpeningFcn
in OPT2MENU.m. In our example, you should append a new model tag to modelslist as
following:

modelslist = [· · · , handles.modeltaghere].

Make sure that the Tag in the variable modelslist has the same ordering as the model name
in the variable names, see model_number in MMB.m.

Add new common policy rule step by step
Henceforth, it is assumed that ruletaghere, is the Tag of the new rule.

• In Option 1: modifications should be done in OPT1MENU.fig and OPT1MENU.m. Since only
one policy rule can be chosen in this option, the steps are very similar to those of adding a
model in Option 2. There are the following:

(i) Add a new radio button in the panel Monetary Policy Rule.

(ii) Edit the fields String and Tag

(iii) Add the rule Tag in the existing list of other rule tags, ruleslist in the function OPT1MENU_OpeningFcn
in OPT1MENU.m as below.

ruleslist = [· · · , handles.ruletaghere].
Make sure that the Tag in the variable ruleslist has the same ordering as the rule name in
the variable rulenames in MMB.m.

• In Option 2: modifications should be done in OPT2MENU.fig and OPT2MENU.m. Like for
the models in Option 1, the choice of monetary policy rules in Option 2 are implemented with
checkboxes. The steps of adding a new one are therefore:

(i) Add a new checkbox in the panel Monetary Policy Rule.

(ii) Edit the fields String and Tag

(iii) In the property inspector, write the following line in the field Callback:

OPT2MENU(’rules_Callback’,hObject,eventdata,guidata(hObject))

Again this is the same Callback for all rules in this panel.

24

(iv) Add the rule Tag in the existing list of other rule tags, ruleslist in the function OPT2MENU_OpeningFcn
in OPT2MENU.m as below.

ruleslist = [· · · , handles.ruletaghere].
Make sure that the Tag in the variable ruleslist has the same ordering as the rule name in
the variable rulenames in MMB.m.

References

Clarida, R., Gali, J., Gertler, M., 1999. The science of monetary policy: A New Keynesian perspective.
Journal of Economic Literature 37(4), 1661–1707.

Levin, A., Wieland, V., Williams, J. C., 2003. The performance of forecast-based monetary policy
rules under model uncertainty. The American Economic Review 93(3), 622–645.

Rotemberg, J. J., Woodford, M., 1997. An optimization-based econometric framework for the evalu-
ation of monetary policy. NBER Macroeconomics Annual 12, 297–346.

Wieland, V., Cwik, T., Mueller, G. J., Schmidt, S., Wolters, M., 2012. A new comparative approach
to macroeconomic modeling and policy analysis. Journal of Economic Behavior & Organization
83 (3), 523–541.

25

